Copyright © 1986 Published by Elsevier Science Ltd. All rights reserved.
Manfred Braun, * and Reiner Veith
Institut für Organische Chemie I der Universität Düsseldorf Universitätsstraβe 1, D-4000 Düsseldorf 1, West Germany
Received 16 October 1985.
Abstract
An intramolecular Friedel-Crafts type reaction of the thioacetals and is the key step in a simple synthesis of the diketones and .
References
For isolation and determination of the structure, see R. Misra, R.C. Pandey and J.V. Silverton J. Am. Chem. Soc. 104 (1982), p. 4478 and references cited therein . Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (25)
A.V. Rama Rao, D. Reddeppa Keddy and V.H. Deshpande J. Chem. Soc. Chem. Commun. (1984), p. 1119. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (0)
A.S. Kende, F.H. Ebetino and T. Ohta Tetrahedron Lett. (1985), p. 3063. Abstract | PDF (180 K)
| View Record in Scopus | Cited By in Scopus (9)
For preparation of a benzindandione in a model sequence for the synthesis of 1, see K.A. Parker, K.A. Koziski and G. Breault Tetrahedron Lett. (1985), p. 2181. Abstract | PDF (130 K)
| View Record in Scopus | Cited By in Scopus (13)
S. Gabriel Ber. Dtsch. Chem. Ges. 18 (1885), p. 3470.
F. Nathanson Ber. Dtsch. Chem. Ges. 26 (1893), p. 2576.
S.L. Shapiro, K. Geiger and L. Freedman J. Org. Chem. 25 (1960), p. 1861.
J. Rotbergs, V. Strautina and V. Oskaja Latv. PSR Zinat. Akad. Vestis, Kim. Ser. (1974), p. 75; Chem. Abstr. 80 (1974), p. 145861t.
Sulfur stabilized carbocations, generated from other precursors, are known to attack arenes: A. Eschenmoser Quart. Key. 24 (1970), p. 366. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (23)
E.R. de Waard, H.R. Reus and H.O. Huisman Tetrahedron Lett. (1973), p. 4315. Abstract | PDF (105 K)
| View Record in Scopus | Cited By in Scopus (4)
Satisfactory C, H analyses and spectral data were obtained for the new compounds. : 1H NMR (CDCl3,; 250 MHz) δ = 1.3 (t, J = 8 Hz; 3 H), 2.60 – 2.95 (m; 4 H), 4.63 (t, J = 8 Hz; 1 H), 6.62 (d, J = 8 Hz; 1 H), 7.12 (t, J = 8 Hz; 1 H), 7.32 (t, J = 8 Hz; 1 H), 7.53 (d, J = 8 Hz; 1 H), 7.92 – 7.95 (m; 2 H), 8.03 – 8.15 (m; 2 H). : 1H NMR: δ = 1.3 (t, J = 8 Hz; 3 H), 2.55 – 2.90 (m; 4 H), 3.40 (s; 3 H), 4.79 (t, J = 8 Hz; 1 H), 6.70 (d, J = 8 Hz; 1 H), 7.21 (d, J = 8 Hz; 1 H), 7.40 (t, J = 8 Hz; 1 H), 7.96 – 8.01 (m; 2 H), 8.08 – 8.19 (m; 2 H). : Schmp. 127 – 129 °C; 1H NMR: δ = 2.57 (t, J = 8 Hz; 2 H), 3.31 (t, J = 8 Hz; 2 H), 6.63 (d, J = 7.5 Hz; 1 H), 7.06 (t, J = 7.5 Hz; 1 H), 7.23 (t, J = 7.5 Hz; 1 H), 7.35 (d, J = 7.5 Hz; 1 H), 7.9 (mc; 2 H), 8.06 – 8.11 (m; 2 H). 1H NMR: δ = 2.55 (t, J = 8 Hz; 2 H), 3.18 (t, J = 8 Hz; 2 H), 3.48 (s; 3 H), 6.67 (d, J = 8 Hz; 1 H), 7.00 (d, J = 8 Hz; 1 H), 7.53 (t, J = 8 Hz; 1 H), 7.71 – 7.90 (m; 4 H).